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Abstract

The problem of modelling and simulating pipelines that are used for transporting different fluids is addressed in
the paper. The problem is solved by including fluid density in the model beside pressure and velocity of the medium.
First, the system of nonlinear partial differential equations is derived. Then, the obtained model is linearised and
transformed into the transfer function form with three inputs and three outputs. Four different forms of model
description are presented in the paper. Since transfer functions are transcendent, they cannot be simulated using
classical tools. Rational transfer function approximation of the model was found and that simple model was validated
on the real industrial pipeline. It was also compared to the model that does not take the changes in fluid density into
account. The latter model cannot cope with batch changes whereas the proposed one can.
© 2003 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Real time transient model (RTTM) based leak monitoring systems require a sophisticated mathematical
model of the flow in pipelines. The so called “water hammer equations” are relatively simple mathemat-
ical models assuming isentropic flow; they are obtained using the principles of mass and momentum
conservatiorfl].

However, in the case when different fluids are transported through the same pipeline, the above model
is not adequate. The water hammer equation can easily be extended, as will be sBeetian 2 This
enables simplified description of multi-product-flows with multiple products or batches being transported
at the same time in one pipeline. Up to now, there is no analytical solution for this nonlinear, partial differ-
ential equation system available. Instead, numerical solution techniques like the method of characteristics
can be usefR].
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Another possibility to solve the problem is to use linearisation and Laplace transformation techniques
in order to get a frequency domain description. This leads to a simplified pipeline model with lumped
parameters. We hereby get some advantages: the classical system theory for multi-input multi-output
(MIMO) systems can be used, e.g. for controller design and system identification. The resulting algorithms
are less time-consuming and hence better suited for critical real time applications. Additionally, the
analysis of fluid transients caused by leaks is much easier.

In Section 2 the nonlinear model of a pipeline is derived that takes into account multiple fluids being
transported. IrSection 3 the model is linearised, and tBection 4 a simplified model with lumped
parameters is given. The obtained models is compared to the one derifgdhat assumes constant
density of the fluid. The results are validated on the real industrial pipeliBedtion 5 At the end some
conclusions are given.

2. Mathematical model of the pipeline

The classical solution for unsteady flow problems is obtained by using the equations for continuity,
momentum, and energy. These equations correspond to the physical principles of mass, momentum, an
energy conservation. Applying these equations leads to a coupled nonlinear set of partial differential
equations and hence, they are very difficult to solve analytically. To date, there is no general closed-form
solution. Further problems arise in the case of turbulent flow, which introduces stochastic flow behaviour.
Therefore, the mathematical derivation for the flow through a pipeline is a mixture of both theoretical
and empirical approaches.

The following assumptions for the derivation of a mathematical model of the flow through pipelines
are made:

1. Fluid is compressibleCompressibility of fluid results in an unsteady flow.

2. Flow is viscousViscosity causes shear stresses in a moving fluid.

3. Flow is adiabatic No transfer of energy between fluid and pipeline will be considered.

4. Flow is isothermal Temperature changes due to pressure changes can be neglected for liquids. Under
these circumstances, temperature changes could only be the result of friction effects, but these effect:
will also be neglected. Therefore, the temperature along the pipeline is constant.

5. Flow is one-dimensionalll characteristics of the pipeline such as veloaitgnd pressur@ depend
only on thex-axis laid along the pipeline.

Consider now a pipeline of lengih, with constant diameter
D = D(x) = 2R = constant 1)

The continuity equation in conservative form for the one-dimensional case {4élds

dp v
- — =0 2
dt+'08x @

with densityp(x), velocity v(x), and with the substantial or total derivative

do  9p o
dr ot | ox 3)
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The momentum equation in conservative form for the one-dimensional case[fields

dv . op  IpL
— =—pg Sine — — + —

'Odt rg * ox + ox
with pressurep(x). The quantityg sin « is thex-component of the standard gravity vecgoil he pressure

lossp, rely on the shear stresg. The formula from Darcy and Weisbafbl states that

(4)

apL Av|vl

= — 5
ox pZD )

with the dimensionless friction coefficientv). This equation holds for laminar flow as well as for
turbulent flow. Laminar flow is described %]

64
A=) = 2o (6)

if the dimensionless Reynolds number

D
Re= —v (7)
Vv
is smaller than 2320u(is the kinematic viscosity of the fluid). For larger values of the Reynolds number,
flowis assumed to be turbulent. In that cdse, (6)can be replaced by an appropriately mixed theoretically
and empirically derived formula such as the formula of Colebii@dk

1 251 kR)
— = -2log| —— +0.27— 8
v g(R oot @)

with roughness heigliiz as a measure of the roughness of commercial pipes.
UsingEgs. (4) and (5)ve obtain

dv 1dp . Av|y|
— 4+ —— sin =0 9
dt+,08x+g OH_'OZD ©)

The model of the pipeline is completed by
p=dp (10)

with the (isentropic) speed of soundf the fluid.Egs. (2), (9) and (10¥ad to the following mathematical
model that will be treated in the paper:

dop ov

- — =0 11
dr +p8x (11)
dv 1dp . Av|y|

- =0 12
dt+,08x+gsma+ 2D (12)
d d

P_ 2P _¢ (13)

drodr
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3. Linearisation of the mathematical model

By replacing total derivatives with partial ones, multiplyigg. (12)with p, and by insertind=q. (11)
into Eq. (13)we get

T ivErp—=0 14
o Vo TP (14)
ov dv  dp . PAV|Y|

— —+ — sin =0 15
Par TPV Ty TSN+ =0, (15)
op op L

— — — =0 16
o Vax TP (16)

In order to simplify this system of partial differential equations, first the steady state will be evaluated.
It is obtained by setting to zero all partial derivatives with respect to tigyigr (= 0) which yields the
following set of ordinary differential equations (with respeckjo

_dp _dv

- — =0 17
vdx +'de (A7)
_dv dp . . 10| 7]

e =0 18
pvdx+ dx +hpgSnat 2D (18)
hal - = 1
Vi +a P 0 (29)

This set of equations cannot be solved analytically. It was solved by MATLAB-SIMULINK for the
pipeline used for the verification of the model (s®ection §. The results fotp, v andp are shown in
Fig. 1

The convective termgvdv/dx andvdp/dx in Egs. (15) and (16yespectively, are small compared to
the derivatives with respect to tim@v/dr anddp/at, respectively, and will be neglected. Nektjs. (15)
and (16)will be linearised around steady-state solution. In order to do this, new variables will be
introduced:

D(x, 1) = v(x, £) — D(x) (20)
p(x,t) = p(x, 1) — p(x) (21)
px, 1) = p(x, 1) — p(x) (22)
After linearisingEgs. (15) and (16)and taking into accourtigs. (18) and (19}the following is obtained:

_0v dp L. PAY . AV|V]

4 F =0 23
pat+8x+pg5|no¢+ D v 2Dp (23)
p | , 00, dv

Py +apax+apdx—0 (24)

The last term irEq. (24)can be neglected due to the fact thaydi is very small (sed-ig. 1). Using
notations that are common in the analysis of electrical transmission lines:

L=p (25)
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Fig. 1. Steady state solution of the pipeline: presguneelocity v, and densityp.

P
R = 26
> (26)
1
C=— (27)
asp
and by denoting
. AV|Y|
T = g sin 28
gsina+—- (28)
we get
v . . op
L— + R Tp = —— 29
o TRV EP= 0y (29)
op v
—_ = 30
ot ox (30)

Since the fluid in the pipeline is almost incompressible, the dynamigsroEqg. (14)are relatively slow,
compared to those af and p in Egs. (15) and (16)As a consequence, the velocity profile along the
pipeline is nearly constant within each time instant. Due to a special reason that will be explained later,
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the derivativedv/dx will not be neglected ifEq. (14) Rather, it will be approximated with a very small
constantAw,. Linearising(14) and considering22) then yields:
ap(x, ) | . dp(x) = _  9p(x,1)
ot + o0 ) dx + () 0x
Note that ¢b/dx is very small (se&ig. 1). It could be neglected ikq. (31) but it will not be at this point
since its influence is similar to the influence af/dx (seekEq. (17).

The first step in obtaining analytical solution of the system is to sBlye(31)by applying Laplace
transformation on it. It is assumed that it is permissible to interchange the order of differentiation with
respect tax and the taking of the Laplace transform. The consequence is that the first-order ordinary
differential equation is obtaing@]

do(x) _  dp(x,s)
dx + o) dx

It is assumed here that the system rests at timé), i.e.p(x, 0) = 0, p(x, 0) = 0, v(x, 0) = 0. Eq. (32)
can then be transformed to

+ po(x,H)Av, =0 (31)

sp(x, s) — p(x, 0) + v(x, s) + Avep(x,5) =0 (32)

P B = 0T @
The solution of the homogenous partted. (33)would be

p(x, s) = po(s) €™ (34)
with

po(s) = p(0, s) (35)

o s + Av, (36)

v(x)

if m (or v) did not depend on. Since the latter assumption is violated d&wl (33)is not homogenous,
the candidate for the solution is

p(x, 5) = p(x,5) &™ 37)
InsertingEq. (37)into Eg. (33) and taking into account
dm s+ Av, dv _om dv

T @ & v (38)
yields
dp ('x’ S) eme_i_ p/(x’ S) eme(_m _ xd_m) _|_ mp/(x’ s) eme — _dIO('x) UEX’ S) (39)
dx dx dx v(x)
do'(x, s) , xdo dp(x) 0(x, s)
- _ R 4
dx p X, )m v dx € dx v(x) (40)

Since d/dx and go/dx are very small, it follows froneq. (40)thatp’ can be regarded as independent of
x (at least on the interval of intereste [0, Ly]). Therefore, the solutio(84) will be treated in the paper.
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Similarly, dependence of physical parameters of the pipelin®( C, T, andm) onx shall be neglected
in the rest of the paper since they are only functions ahdp.

In the following, only the deviation model will be considered. To simplify the notation, the tildes will be
omitted in the equations. The varaiblesv, andp will stand for the deviations of the respective variables
from the stationary values.

The next step in the derivation of a simple model of the pipeline is the analytical solution of linear
Egs. (29) and (30)Performing the Laplace transformation on them yields

(Ls+ R)V(x, s) = —dPéx’ D _ Ioix, 5) (41)
X
Cs: P(x,s) = _dV(x, 5) (42)
dx

where stationary initial conditiorisandp were assumed, i.e(x, 0) = 0, p(x, 0) = 0. By differentiating
Egs. (41) and (42)ith respect toc

dVix,s) _dzP(x, s) B po(x, s)

Ls+ R 43
(Ls+R) dx dx2 dx (43)
dP(x, s) d?V(x, s)
Cs = - 44
dx dx2 (44)
the following equations are obtained usiags. (41) and (42)
d?p d
(Ls+ R) - Cs- Px,5) = o109 | pdp(x.5) (45)
dx2 dx
d?V(x,
(Ls+ R) - Cs- V(x,s) = % —CsTp (46)
X
Taking into accounEg. (34)we obtain:
d?p
(Ls+ R) - Cs: P(x, s) = % — Tpo(s)me~™ 47
X
d?v
(Ls+ R) - Cs- V(x,5) = % — CsTpo(s) e ™ (48)
X
which are known as wave equations. Their solutions are
Ty
P(x, 5) = Cy(s) € ™ + Ca(s) €™ — fO(s)"; e (49)
n-—m
CsT;
V(x, 5) = Ca(s) € ™ 4 Cy(s) €™ — ELO(SZ) e ™ (50)
n-—m

where

n’> = (Ls+ R) - Cs (51)
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The four expressiong;(s), C2(s), Cs(s), andC4(s) are not completely independent. By introduc{68)
into (41) and by differentiating49) with respect toc, we obtain

.
(Ls+ R) |:C3(S) e Cyln - o) g ’mx]
n m

Tpo(s)m?

=nCi(s) € ™ — nCy(s) €™ — > 5
nc—m

— Tpo(s) ™ (52)

FromEqg. (52) the following relations betweefi; (s), Cs(s), andCx(s), C4(s), respectively, are obtained
Ci(s) Ls+R  [Ls+R

= = =7 53
Cs(s) n Cs K (53)
CLs+R _
Cals) _ _Ls+ [s+ RCs= —Zx (54)
Ca(s) n
since

Ls+ R)C 2

T,oo(s)emx|:( SRS P 2} =0 (55)
nc—m nc—m

The termZy is called thecharacteristic impedancelhe complete solution is obtained applying the
boundary conditions. First, using the boundary conditions ferO

Topo(s)m ,Oo(S)m

P(0, 5) = Po(s) = C1(s) + Ca(s) — PR = Zg(C3(s) — Cyls)) — 2 (56)
S
V(O, ) = Vo(s) = Ca(s) + Cals) — ¢,sz) (57)
the coefficient<s(s) andCy(s) are obtained in the following form
1 1 Too(s) 1
C3(s) = —Vo(S) + EPO(S) + 2Z¢ n— (58)
1 1 Too(s) 1
Cy(s) = Vo(S) — EPO( s) + 27 ntm (59)
Next, the boundary conditions far= L are used irEgs. (49) and (50)
PLp, 5) = PL(s) = Zx[Ca(s) €™ — Ca(s) €] — Tp"“,);’é e (60)
V(Lp, 5) = VL(s) = C3(s) €% + Ca(s) €™ — % e M (61)

By introducing(58) and (59)nto (60) and (61}he inverse chain representation of the pipeline is obtained

PL(s) =—Zk Vo(s) sinh(nLy) + Po(s) cosh(nLy)

Tmpo( ) —mLp
pR— [cosh(an) - sinh(nL,) — € ] (62)
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VL (s) = Vo(s) cosh(nly) — ZiPo(s) sinh(nLy)
K

_ TMoo(s) _ rn _ si _ e,
+ 2o % — m?) [m cosh(nL,) — sinh(nLy) - e ] (63)

Expressiong62) and (63)can be simplified by the evaluation @f m usingEgs. (36), (51), (25)—(27)
n s+ RCs  /(ps+ pArlvl/D)1/a2ps v | s2+ *5ls

m  (s+Av))/v (s + Avy) /v T a\ s+ Avy)?

Note thatjn/m| « 1 since the sound speed is much bigger than the fluid spepdi). Consequently,
the terms withs /m in square brackets iBgs. (62) and (63an be neglected. By taking into account

(64)

m 1 1 v

W2 —m2 . ((ﬁ)z B 1) N —mt = ~ ¥ Au (65)
and

n

Ze =Cs (66)
Egs. (62) and (63jake the following form

PL(s) = —Zg Vo(s) sinh(nLy) + Po(s) cosh(nlp) — Tipz(s) (cosh(nL,) — ™) (67)

s Uy
Vi (s) = Vp(s) cosh(nLy) ! Po(s) sinh(nL Tvpo(s) sinh(nL (68)
L(s) = Vo(s ( p _Z_K 0(s) ( p)—m(— ( p))

The constaniv, is very small but positive (what can be seen frbig. 1). Consequently, A(s + Av,) is

a stable transfer function. In the time scope of interest this transfer function is equivalent to an integrator,
and will be replaced by one in the equations of the model. This is the reasonwhyas not neglected

in the early phase of the model derivation. Similarly, the terfi-ein Eq. (67)becomes

g M = g TANe g lels — 7 (69)

and can be interpreted as a pure delay systeis the time needed for the fluid to reach the outlet from
the inlet of the pipeline — transport delay).

Apart fromEgs. (67) and (68)an additional equation is needed for the complete description of the
system. This equation defines the density at the pipeline outlet and can be obtained by $etfigin
Eq. (34)

p(Lp, 5) = pL(s) = po(s) €™ = po(s) €™ (70)

Finally, we arrive to the noncausal (the transfer function matrix goes tss — oo) representation of
the pipeline:

: Tv o
PL(s) cosh(nLy) —Zx sinh(nLy) _TO( cosh(nLp) — e ™) Po(s)
Vi =] _1 sinh(nLy) cosh(nLy) Tvo sinh(nLy) Vo(s) (71)
pL(s) Zx " " Zis " Po(s)

0 0 ew
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The linearised model of the pipelin@1) can be written in one of the following four forms which
differ from each other with respect to the model inputs (independent quantities) and outputs (dependent

guantities):

1. Hybrid representation: Inpuig, P_, po and outputd/., Py, o :

Po
WL
oL

2. Hybrid representation: Inputg , Py, pg and outputd’, P, oL :

P
Vo
PL

1
cosh(nlLy)

1 tanh(nL,)
Zx P

0

1
coshinLy)

1
—tanh(nL,
Zx h(nLp)

0

3. Impedance representation: Inplits Vi, po and outputsPy, P. oL :

Py
P
PL

Zk coth(nLy)
1
K sinh(nLy)
0

4. Admittance representation: Inputs, P, po and outputd/y, Vi, or:

Vo
|
PL

X

1 coth(nLy)
Zx P

1 1

Z_K sinh(nL,)

0
Po
P
Lo

Tvo 1 ]
Zx tanh(nL, — (1-— e
xtanh(nly)  — ( cosh(nLy) ) P
T
. Y tanh(n Lyye™ Vo (72)
cosh(nLy) Zis 00
0 e ]
TUO 1 7]
—Zgtanhinl) ——————€"
x tanfinty) (cosr(an) ) Py
1 T
- _ﬂtan“an) 1 (73)
coshinLy) Zks 00
0 e |
7 1 TU() N
Ksinh(an) s Vo
T
—Zx coth(nLy) 0 s i (74)
L0
0 er |
1 Tvg 1 T
— — coth(nly)) - —e™™®
Zg sinh(nly)  Zgs ( (nkp) sinh(nLy) )
1 Tvg 1
—— coth(nL, — - — coth(nLy) e™
Zx (nkp) Zxs (smh(an) (Nkp) )
0 e i
(75)

It should be noted that the forms 1-4 represent causal models, &hil§7 1)represent a noncausal
model. Therefore, the latter cannot be realised by means of simulation. This completes the derivation of
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the transfer functions of the linearised pipeline. The resulting transfer functions are transcendent. In the
next section, their approximations by rational transfer functions will be given.

4. Simplified pipeline model with lumped parameters

Inthis section, the rational transfer functions of the pipeline will be derived since such transfer functions
are much easier to simulate, e.g. when designing real time transient model based leak monitoring systems.
There are seven different transcendent functions {gthe eighth one, but this one will be left as itis, since
it can be simulated directly—at least approximately) in the four pipeline forms of the previous section:
1/ cosh(nLy), (1/Zk) tanh(nLy), Zg tanh(nLy), Zg coth(nly), Zx(1/ sinh(nly)), (1/Zk) coth(nly),
and(1/Zk)(1/ sinh(nLy)). Only admittance representation transfer functions, used in the next section
for verification of the model, will be analysed here (hybrid representation transfer functions can be found
in [3]). By expanding the transcendent transfer functions into a Taylor series we get

1 s (L2LC+ L LAR%C?)s% + 1 L2RCs+ 1
—coth(nLy) = coth (Lp (Ls+ R)Cs) ~ 20 24P "
Zx Ls+ R §LSRLC§ + (LpL + ngRzC)s + LpR
(76)
900 T T T T T T
850 B
800 B
750 .
E
2
Q-700 B
650 ‘yi “ g
|
|
600 - M .
550 1 1 | | 1 1
0 0.5 1 1.5 2 2.5 3 3.5
Time [s] x10*

Fig. 2. The time courses of the densjiy- measureg at the inlet (dash-dot line), measurgdat the outlet (solid line) and
simulatedp (dotted line).
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This transfer function describes the change of the fluid velocity at one end of the pipeline if the pressure is
changing at the same end while the pressure at the other end and the density on the inlet remain constar

1 Cs 1 1
Zxsinhnlp) ~ V Ls+ Rsinh(Lpy/(Ls+ RICS)  JL3RLCE + (LpL + 16L3RC)s + LyR
(77)
This transfer function describes the change of the fluid velocity at one end of the pipeline if the pressure is

changing at the other end while the pressure at the same end and the density on the inlet remain constant.
has a static gain/XL,R) which corresponds to the static change of the velocity due to changing pressure.

5. Validation of the simplified model
The models were validated on a real pipeline with the following data: length of the pipglire

9854 m, velocity of sound = 1059 m/s, friction coefficient = 0.0158, gravity constant = 9.81 m/g,
diameterD = 0.2065 m, and inclinatior = —0.00256 rad. Simulations of the plant were performed on

T T
3.2F Measured data .
3 — —
Simulated response
with p
28 Simulated response 7
without p
26 —
@
54 .
5 ‘
2 ‘ (
22 o o
\
2r \Simulated response 7
without p
Simulated
1.8F response |
with p
1.6 -
| | | | | |
0.5 1 1.5 2 2.5 3
Time [s] 4

x 10

Fig. 3. The time courses of the fluid velocity at the inlet of the pipeline — measured velocity, model response without and with
the consideration of the density
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the lumped parameter model in admittance form that was obtained by insEgmg76) and (77nto
Eq. (75)

The most significant change in the fluid dengityccurs during a batch change, so the data was recorded
inthe operation phase where the batch was changed twice. Due to operational reasons the pipeline must be
stopped before and after a batch change. The stationary operation between 7000 and 14,000 s was chose
as the operating poinEig. 2 shows the time courses of the (measured) densdythe inlet (dash-dot
line) and outlet (measured density—solid line; model response—dotted line) of the pipeline, respec-
tively. The batch changes (1000-5300 and 14,800-19,0005s) can be seen clearly. The model response
corresponds perfectly to the measured data for the second batch change, where the current operating
conditions meet the chosen operating point. However, during the first change some miss-agreement
can be noticed between the measured and the simulated density at the pipeline outlet. The difference
is expectable since the system is not situated in the operating point where the linearised model was
obtained.

Next, the velocity part of the lumped parameters model will be validated and compared to the model
presentedifi3]. The latter was obtained based on assumption that the density of the fluid being transported
is constant all the time. The model proposed here takes the fluid changes into account. The comparison
will allow us to estimate the benefit of the extended model. Simulation results of the both models will be
compared to the real plant data.

2.6 T T T T T T T

Measured data
25F

‘whlhm“"‘[‘l‘{‘”“h”iluﬂ‘ ]\‘U“‘“‘H‘ m““ﬂ\ H |JH|‘|"H“MM4“[|U “ “‘ M\m

o
24} / i

2.3f V‘ .

2.2 I i Simulated response 7
with p
21 ]

Simulated response

[m/s]

inlet

V.

ol b without p |
)

190 I .

1.8 i

1.7 B

16 1 1 1 | 1 | |

2.05 2.06 2.07 2.08 2.09 2.1 2.11 212 2.13

4

Time [s] x 10

Fig. 4. A detail ofFig. 3.



630 S. Blaz¢'et al. / Mathematics and Computers in Simulation 64 (2004) 617—630

In Fig. 3three time courses of the fluid velocity at the inlet of the pipeline are shown: the measured one
and responses of two models (with and without the consideration of the deisitycan be seen that
the proposed model which takes into consideration the depsiéyn cope with the changeable operating
conditions whereas the model frgi3] cannot. Note that the latter model performs very well between
7000 and 14,000 s where current density is approximately equal to the constant density of the simple
model. But after the batch change the simulation results are not very satisfactbry. kha detail of
the Fig. 3is depicted, where the transient phase can be seen in detail. Good coincidence between the
measured data and the proposed model response can be established.

6. Conclusion

The model of the multi-batch driven pipeline has been derived in the paper. To accommodate for
the changes in the density, the latter is included in the model of the pipeline. The resulting model was
the system of partial differential nonlinear equations. After linearisation and Laplace transformation a
transfer function matrix was obtained that was transcendent. Simulations of such functions are quite
complex and time consuming. This is why the lumped parameter approximation was found. The latter
enables classical simulation and is therefore suitable for observer based leakage detection. It has bee
shown that the approximative model is capable of describing real plant dynamics. The experimentation
has also shown that much better results are obtained by that model than the one proj3jsidifierent
fluids are transported through the pipeline.
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